
Evaluating Semantic Segmentation Performance with
Various CNN Architectures for PASCAL VOC-2007

Hargen Zheng

Halıcıoğlu Data Science Institute

University of California, San Diego

San Diego, CA 92092

yoz018@ucsd.edu

Chuong Nguyen

Dept. of Computer Science and Engineering

University of California, San Diego

San Diego, CA 92092

chn021@ucsd.edu

Nathaniel del Rosario

Halıcıoğlu Data Science Institute

University of California, San Diego

San Diego, CA 92092

nadelrosario@ucsd.edu

Ziyue Liu

Dept. of Electrical and Computer Engineering

University of California, San Diego

San Diego, CA 92092

zil085@ucsd.edu

Adam Tran

Department of Mathematics

University of California, San Diego

San Diego, CA 92092

ant010@ucsd.edu

Abstract

We utilize the PASCAL VOC-2007 dataset for pixel-level semantic segmentation,1

featuring pixelwise annotations for 21 object categories (including the background2

category). Our initial model employs a basic encoder-decoder architecture, utilizing3

convolution and transpose convolution layers with ReLU activation functions. The4

initial loss criterion is set as unweighted Cross Entropy, and batch normalization is5

applied, with no additional techniques like max-pooling or dropout. This baseline6

model yields a 0.056613 IoU and 0.734628 pixel accuracy but tends to predict7

most pixels as background. To address this, we implemented cosine annealing, data8

augmentation (random rotation, flip, scaling), weighted cross entropy, and dropout.9

These enhancements result in an improved IOU of approximately 0.07. Finally,10

we benchmark our model against FCN ResNet-101 and UNet in terms of IOU11

and pixel accuracy. Notably, fcn_resnet101 achieves a higher IOU of around12

0.3. However, this is influenced by limited training data—our dataset comprises13

only 209 training images. Through data augmentation, we expand the training14

set to 836 images. Overall the highest performing model we trained in regards to15

the pixel accuracy and IoU metrics was the UNet which achieved over 0.75406516

pixel accuracy and 0.0705095 IoU, which surpassed the baseline benchmark. In17

comparison to the transfer learning Fully Convolutional Network ResNet-10118

model, which is pretrained on COCO dataset that has similar classification task,19

CSE 151B: Deep Learning. PA2, Fully Convolutional Network for Semantic Segmentation.



the accuracy was still lower than ResNet’s performance of 0.873404 and 0.33000720

IoU, which was expected with a model designed with more complex architecture21

and similar classification task.22

1 Introduction23

The task of object recognition has been around for many decades, and with many different24

advancements in the past twenty years, as well as the increasing number of applications and use25

cases in everyday life, computer vision has become an increasingly important and complex field of26

artificial intelligence. In this report, we learn about and experiment with different architectures for27

Convolutional Neural Networks to perform semantic segmentation for image classification and object28

recognition.29

30

To begin, we used PyTorch for all of the experiments, taking advantage of the built in methods31

to help build different architectures for the networks, as well as implementing methods beyond32

native stochastic gradient descent and random weight initialization. Specifically, we used batch33

normalization between the layers of the CNN instead of in the raw data; the design choice behind34

doing this for mini-batches instead of the full data set was to speed up training and use higher learning35

rates, intuitively making learning ’easier’. This is because batch normalization reduces internal36

covariate shift. Applying this at each layer ensures that the mean and variance at each layer stay the37

same, reducing the change in the distribution at each new layer, and thus leading to a more robust38

network. Such approach is useful especially when the network is very deep, which is something we39

later experiment with.40

The network weights were initialized using Xavier Initialization, which combats the problem of too41

large or too small initial weights. Too large or too small initial weights can cause activation outputs to42

completely vanish during the forward pass, which is why we choose to use Xavier Initialization. This43

method sets a layer’s weights to values chosen from a random uniform distribution bounded between44

±
√
6√

ni+ni+1
where ni is the number of outgoing connections and ni+1 is the number of outgoing45

connections.46

In the later sections, we discuss more of the specific parameters, methods, and experiments involved47

in the construction of a model that can successfully detect and classify objects in images.48

2 Related Work49

For a particular image in the dataset, pixels for training are predominately classified as background.50

Using any normal Convolutional Neural Network without taking the class imbalance into account will51

force the model to mainly predict background pixels. To mitigate the class infrequency, the following52

paper [2] suggested to use the following loss function: Focal Loss, Tversky Loss, Focal Tversky Loss,53

and Weighted Cross Entropy Loss in which we attempted to implement all of them. However, we54

discovered that our model frequently failed to perform as best as the baseline while implementing the55

listed loss functions except for the Weighted Cross Entropy. The Weighted cross entropy performs56

relatively well in our dataset because it assigns weights according to the frequency of the feature in57

the image. Meaning features that appear least over the entire dataset will get more weights. According58

to [3], this is an effective method because given a rare feature in an image, this loss function forces59

the network to learn the feature explicitly rather than randomly guessing the frequent features like the60

background by giving higher punishments/penalties when calculating the error. Hence, we decided to61

stick with the Weighted Cross Entropy to mitigate our imbalance dataset. Despite doing this, the IoU62

result only improves by a slight margin compared to the baseline performance. We then went back to63

take a look at data augmentation, [1], because we realized that our dataset is very small and thus our64

network was not learning as much. Initially, we only augmented our data once, which increased our65

dataset size by a bit, but the performance remains relatively the same. We then decided to perform out66

data augmentations 4 times to significantly increase our dataset, and the performance/IoU improved67

by roughly 13%.68

2



We reference the seminal paper ’U-Net: Convolutional Networks for Biomedical Image Segmentation’69

[4] to reconstruct the UNet architecture, elaborated in Section 3.3. This serves as one of the70

contemporary models for model comparison.71

3 Methods72

3.1 Baseline Model73

The input to the network is an input image with three channels for the RGB values. These are74

then passed to an encoder that consists of a series of convolutional layers (conv1 to conv5) with75

increasing numbers of filters (32, 64, 128, 256, 512), each followed by batch normalization76

(bnd1 to bnd5) and a ReLU activation function. After this the model consists of transposed77

convolutional layers (deconv1 to deconv5) with a decreasing numbers of filters (512, 256, 128,78

64, 32) to increase the dimensions of the next inputs to the next layers, each followed by batch79

normalization (bn1 to bn5) and again a ReLU activation. The second decoder half of the layers serve80

to upsample the feature maps back to the original input size. The final convolutional layer (the81

classifier layer) with a kernel size of 1 maps the 32-channel feature map to the number of classes82

in the dataset. Subsequently, the output of this final convolutional layer is processed through a83

fully connected layer, producing predictions in a Batch_size×N_classes×Height×Width tensor.84

85

The optimizer we used was the AdamW built in method from PyTorch, and the training loop86

incorporates batch normalization with early stopping on the validation accuracy. AdamW works by87

implementing weight decay or regularization only after controlling the parameter wise step size, and88

thus making the regularization term proportional to the weight itself instead of including it in the89

moving averages of the weights. This allows for the weights to tend less likely towards a larger scale,90

and therefore lead to a better generalizing model since smaller weights are preferred. Because of this,91

we chose AdamW over native Adam and SGD to hopefully increase generalization, even among a92

smaller dataset. The results are below in the results section.93

94

3.2 Improvements Over Baseline95

The baseline model has a relatively high pixel accuracy but low IoU value. Since the pixel labels are96

pretty imbalanced where background label is dominating, our model might just be predicting pixels97

to background to achieve the high pixel accuracy. To improve the baseline model performance, we98

tried to incorporate learning rate scheduler, data augmentation, and designing loss function.99

Firstly, we discuss the details of learning rate scheduler approach. As instructed, we tried cosine100

annealing learning rate scheduler, which decreases the learning rate within a window, then reset the101

learning rate to the original value, and repeat. Mathematically, the learning rate is updated as follows:102

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax
π

))
, Tcur ̸= (2k + 1)Tmax; (1)

ηt+1 = ηt +
1

2
(ηmax − ηmin)

(
1− cos

(
1

Tmax
π

))
, Tcur = (2k + 1)Tmax, (2)

where we set ηmax = 1e− 2, ηmin = 1e− 5, Tmax = 20 in all our experiments. The optimizer we103

pass into the learning rate scheduler is described in the baseline section.104

The cosine annealing learning rate scheduler helps us move towards minimum of loss function at a105

decreased speed, while making sure we are not stuck at the local minimum by suddenly resetting the106

learning rate to the original value after some period.107

Since the size of our training dataset is pretty small, we tried to apply data augmentation techniques108

to expand the training dataset, in hope that we can obtain a better performance by exposing our model109

to more variations of the input images. We randomly crop 224× 224 subimages from the original110

image. This helps us gain different crops of the input image and thus generating more training111

examples for our model. We set antialias to True to smooth out the jagged edges on curved lines and112

diagonals. Besides, we also applied random rotation with degrees between −180 degrees and 180113

degrees. This helps us rotating the images in all possible angles and provides different orientations of114

3



the same objects in the training set. Finally, we flip images horizontally with the default probability115

of 0.5. Once a given image is flipped horizontally, the orientation of a given object is changed, thus116

providing more information for our models to recognize the object.117

In all cases of data augmentation, we hope to achieve a better model performance by generating118

artificial training examples that would provide more information about our training dataset to the119

model, which helps the model learn decision boundaries better and thus having a better overall120

performance. With the above three different augmentation techniques, we are able to add three times121

more size of the original training dataset, which expands the training set by a factor of four.122

Due to the nature of our dataset and because we are classifying each and every pixel, there is a123

huge class imbalance in the labels. Around 73.6% of the pixels in the training dataset are labeled as124

background pixels. Naturally, if our model were to classifying every single pixel as background, we125

would get a pretty high pixel accuracy. To combat the class imbalance and improve our model, we126

decided to apply different weights to each class and pass the resulting weights to the cross entropy127

loss, so we can still use a popular loss function for the multi-class classification task, while making128

the loss function customized to our imbalanced dataset. To obtain the weights for individual classes,129

we count the number of occurrences of each class in the training labels. For class category i, the130

weight is given by131

log

(
1

max{c0, c1, . . . , c20}

∑
j cj

ci

)
, (3)

where ci represents the pixel counts of class appearing in training set labels.132

Firstly, we divide the sum of total counts by class count for each class category. By this computation,133

dominant classes would have lower weights. Then, we normalize the weight to be from 0 to 1 by134

dividing the result by the maximum of class counts. Finally, log is taken to scale the class weights.135

By doing so, classes with a smaller frequency would have a higher weight, leading to a higher penalty136

if misclassified. This forces our model to focus more on the less frequent classes and solves the137

problem of class imbalance.138

Note that for model improvements, the later techniques build on previous ones. The sequence of139

techniques we tried is learning rate scheduler, data augmentation, and finally loss function redesign.140

This means while experimenting with data augmentation, we have learning rate scheduler turned on.141

Also, when we tried the redesign of loss function, we apply both the learning rate scheduler and data142

augmentation techniques.143

4



3.3 Experimentation Methods144

(5a)145

Recall that the baseline architecture consisted of the last layer of the network being a Conv2d layer,146

with a standard Cross Entropy Loss using the built in PyTorch method. The weight initialization was147

kept as the Xavier method. Additionally we kept the AdamW optimizer method standard as well.148

With this in mind the first initial architecture involving dropout was similar to the baseline, however149

we expand on this in the next two paragraphs to highligh significant changes and the incentives behind150

them.151

The first initial architecture change that we attempted was implementing dropout. This involved152

randomly turning off nodes at each layer with a uniform probability of .5 with the hopes of increasing153

generalization and reducing overfitting in the baseline model. Overfitting was not a huge problem to154

begin with considering the baseline validation accuracy was upper bounded at 73 percent and the155

training accuarcy was upper bounded at 76 percent. After implementing dropout in between the156

encoder and decoder, the performance improved by .1 percent on the validation set from 72.88 to157

72.89 percent.158

Table 1: Baseline w/ Dropout Architecture

Layer In-Channels Out-Channels Stride Kernel Size Padding Activation

Conv1 3 64 2 3 1 ReLU

Conv2 64 128 2 3 1 ReLU

Conv3 128 256 2 3 1 ReLU

Conv4 256 512 2 3 1 ReLU

Conv5 512 512 2 3 1 ReLU

Conv6 512 512 2 3 1 ReLU

Conv7 512 512 2 3 1 ReLU

Deconv1 512 512 2 3 1 ReLU

Deconv2 512 512 2 3 1 ReLU

Deconv3 512 512 2 3 1 ReLU

Deconv4 512 256 2 3 1 ReLU

Deconv5 256 128 2 3 1 ReLU

Deconv6 128 64 2 3 1 ReLU

Deconv7 64 n_class 2 3 1 -

The second architecture kept the dropout implementation from the previous architecture. Instead,159

we have reduced the probability to 0.3, as we are going to add dropout after each convolutional160

layer. Additionally, to minimize overfitting, we have also added two maxpooling layers to add161

some regularization and mitigate any variations on the input dataset that could significantly impact162

the performance of our network despite sharing similar features and input values. Regarding the163

activation functions, we changed Relu to LeakyRelu for learning purposes during back propagation164

when values to activation function is negative, as the regular Relu would just otherwise skip over a165

particular perceptron as the gradient is 0.166

5



Table 2: Baseline w/ Dropout Architecture and Maxpooling + Leaky Relu

Layer In-Channels Out-Channels Stride Kernel Size Padding Dilation Activation

Conv1 3 32 2 3 1 1 LeakyReLU

Maxpooling 32 32 1 2 1 1 LeakyReLU

Conv2 32 64 1 3 1 1 LeakyReLU

Maxpooling 64 64 1 2 1 1 LeakyReLU

Conv2 32 64 1 3 1 1 LeakyReLU

Conv3 64 128 1 3 1 1 LeakyReLU

Conv4 128 256 1 3 1 1 LeakyReLU

Conv5 256 512 1 3 1 1 LeakyReLU

Deconv1 512 512 1 3 1 1 LeakyReLU

Deconv2 512 256 1 3 1 1 LeakyReLU

Deconv3 256 128 1 3 1 1 LeakyReLU

Deconv4 128 64 1 3 1 1 LeakyReLU

Deconv5 64 32 1 3 1 1 -

6



Transfer Learning with FCN ResNet101 (5b)167

As our training dataset is super small, it is a good idea to carry out transfer learning, where we168

leverage the power of another deep model that is pretrained on a similar task. In our case, we169

selected Fully Convolutional Network with a ResNet-101 (FCN ResNet-101) backbone, which is170

pretrained on the COCO dataset that has the same number of class categories as VOC 2007. To171

address class imbalance issues, we applied the all three techniques discussed in section 3.2, namely172

cosine annealing learning rate scheduler, data augmentation, and cross entropy loss function with173

designed class weights. We continued to use Xavier weight initialization and AdamW optimizer to174

maintain consistency so that we can effectively compare the experimentation results with our baseline175

model.176

Table 3: FCN ResNet-101 Architecture

Layer (type (var_name)) Input Shape Output Shape Kernel Size Activation

Conv2d [16, 3, 224, 224] [16, 64, 112, 112] 3 N/A

BatchNorm2d [16, 64, 112, 112] [16, 64, 112, 112] N/A ReLU

Maxpool2d [16, 64, 112, 112] [16, 64, 56, 56] 2 N/A

(layer1) Bottleneck (0) [16,64,56,56] [16, 256, 56, 56] 3 ReLU

Bottleneck (1) [16,256,56,56] [16, 256, 56, 56] 3 ReLU

Bottleneck (2) [16,256,56,56] [16, 256, 56, 56] 3 ReLU

(layer2) Bottleneck (0) [16,256,56,56] [16, 512, 28, 28] 3 ReLU

Bottleneck (1) [16,512,28,28] [16, 512, 28, 28] 3 ReLU

Bottleneck (2) [16,512,28,28] [16, 512, 28, 28] 3 ReLU

Bottleneck (3) [16,512,28,28] [16, 512, 28, 28] 3 ReLU

(layer 3) Bottleneck (0) [16,512,28,28] [16, 1024, 28, 28] 3 ReLU

Bottleneck (1) [16,1024,28,28] [16, 1024, 28, 28] 3 ReLU

· · · · · · · · · · · · · · ·
Bottleneck (21) [16,1024,28,28] [16, 1024, 28, 28] 3 ReLU

Bottleneck (22) [16,1024,28,28] [16, 1024, 28, 28] 3 ReLU

(layer 4) Bottleneck (0) [16,1024,28,28] [16, 2048, 28, 28] 3 ReLU

Bottleneck (1) [16,2048,28,28] [16, 2048, 28, 28] 3 ReLU

Bottleneck (2) [16,2048,28,28] [16, 2048, 28, 28] 3 ReLU

Conv2d [16, 2048, 28, 28] [16, 512, 28, 28] 3 N/A

BatchNorm2d [16, 512, 28, 28] [16, 512, 28, 28] N/A ReLU

Dropout [16, 512, 28, 28] [16, 512, 28, 28] 3 N/A

Conv2d [16, 512, 28, 28] [16, 21, 28, 28] 3 N/A

7



UNET (5c)177

We also tried out the UNet architecture. As described in the UNet paper[5], in the downsampling178

part of the network, each convolution layer (without padding) is followed by a rectified linear unit179

(ReLU). To improve the model performance, we add a batch normalization after each convolutional180

layer but before the ReLU activation. After each two full operation of convolutional layers, which181

consists of a part of a convolutional block, we apply a 2× 2 max pooling with stride 2. We repeat the182

process 5 times, where in the last time we repeat the unsampling block, we do not apply max pooling.183

Then, we apply upsampling with skip connections from downsampling layers with crop following184

similar procedure. At the end, we apply a 1× 1 convolution to map the feature vector to the vector185

with the size of classes.186

The architecture is summarized as follows.187

188

Table 4: UNet Architecture

Layer In-Channels Out-Channels Stride Kernel Size Padding Activation

Conv2d(e11) 3 64 0 3 1 ReLU

Conv2d(e12) 64 64 0 3 1 ReLU

Maxpool1 64 64 2 2 0 -

Conv2d(e21) 64 128 0 3 1 ReLU

Conv2d(e22) 128 128 0 3 1 ReLU

Maxpool2 128 128 2 2 0 -

... ... ... ... ... ... ...

Conv2d(e51) 512 1024 0 3 1 ReLU

Conv2d(e52) 1024 1024 0 3 1 ReLU

upconv1 1024 512 2 2 0 -

Conv2d 1024 (concatenate with e42) 512 2 2 0 ReLU

Conv2d 512 512 2 2 0 ReLU

upconv2 512 256 2 2 0 -

Conv2d 512 (concatenate with e32) 256 2 2 0 ReLU

Conv2d 256 256 2 2 0 ReLU

... ... ... ... ... ... ...

outconv 64 21 1 1 0 -

8



4 Results189

In this section, we present the loss against number of epochs for each individual model we have190

experimented. The plots follows with captions to denote different experiments.191

Figure 1: Baseline Model Plot

Figure 2: Baseline Model with Learning Rate Scheduler Plot

Figure 3: Baseline Model with Data Augmentation Plot

9



Figure 4: Designed Loss Plot

Figure 5: Baseline with Drop-Out

Figure 6: FCN ResNet101 Model Plot

10



Figure 7: UNet Model Plot

Figure 8: Visualization Plot

Figure 9: Visualization Plot

11



Our models’ results are given by the table below:192

Table 5: Models and Their Performance

Model Name Validation Accuracy Validation IoU

Baseline (3) 0.734628 0.0566138

Baseline w/ Dropout (5a) 0.728932 0.0542647

Baseline w/ Dropout & Data Augmentation (5a) 0.7307808 0.0643877

Baseline w/ Scheduler (4a) 0.745939 0.0560166

Baseline w/ Data Augmentation (4b) 0.749721 0.0686395

Baseline w/ Loss Function (4c) 0.750202 0.0679313

FCN ResNet-101 0.873404 0.330007

UNet 0.754065 0.0705095

Note that since pixel accuracy might not be a good evaluation for our problem, we choose to prioritize193

IoU measure. For the entire training statistics, we show the best IoU value in the above table, with194

the corresponding pixel accuracy in the same epoch.195

5 Discussion196

5.1 Q3197

An important thing to note about evaluation is that IoU is the preferred evaluation metric for this198

dataset. Because of the class imbalance nature of the data, accuracy is less reliable of a metric199

compared to IoU.200

The baseline model achieved an accuracy of 73.46% with a standard deviation of 5.66%. The201

drawback of the baseline model is straightforward. First, we only have limited training data before202

applying data augmentation to the baseline model in Q4. There are only 209 images for the training,203

and most of the pixels (30182641 pixels) are labeled as background in the first batch, and 2769488204

pixels are labeled as a person in the first batch, compared to only 188751 pixels as birds, and 152089205

labeled as a potted plant. As we use the regular entropy loss function, the baseline model will be206

pushed to learn to identify most pixels as background and human, and on many occasions, we notice207

that the baseline model can identify the significant object in the image but falsely label them as208

persons. For instance, consider an image of a bird. Although the baseline model can accurately209

identify the main object and its background, it struggles to distinguish between a bird and a human.210

12



(a) Accuracy Against Epoch (b) Loss Against Epoch

Figure 10: Softmax Regression Experiment Plots

Table 6: FCN ResNet-101 Architecture

Layer (type (var_name)) Input Shape Output Shape Kernel Size Activation

Conv2d [16, 3, 224, 224] [16, 64, 112, 112] 3 N/A

BatchNorm2d [16, 64, 112, 112] [16, 64, 112, 112] N/A ReLU

(layer1) Bottleneck (0) [16,64,56,56] [16, 256, 56, 56] 3 ReLU

· · · · · · · · · · · · · · ·
ConvTranspose2d (deconv1) [16, 512, 7, 7] [16, 512, 7, 7] 3 N/A

BatchNorm2d [16, 512, 7, 7] [16, 512, 7, 7] N/A ReLU

ConvTranspose2d (deconv2) [16, 512, 7, 7] [16, 256, 14, 14] 3 N/A

BatchNorm2d [16, 256, 14, 14] [16, 256, 14, 14] N/A ReLU

· · · · · · · · · · · · · · ·
Conv2d (classifier) [16, 32, 224, 224] [16, 21, 224, 224] 3 N/A

Hence, class underrepresentation is not only limited to the relation between background class and211

other classes, but the underrepresentation between each non-background still needs to be improved.212

213

In light of the baseline model’s architecture, the network’s encoder part uses the three-by-three214

convolutional filter to reduce the spatial resolution of the input feature maps. This downsampling215

operation helps extract high-level features and reduce the computational load. When applying216

transpose convolution as upsampling to restore spatial, without proper cropping, the upsampling217

process may not fully retain the spatial information from the feature information decoded in the218

downsampling process, resulting in our prediction not aligning with the original spatial locations219

of features. This misalignment can lead to a loss of precise spatial information, affecting the220

accurate localization of objects, which is especially evident in our model as we need to transpose a221

seven-by-seven feature map to a 224 by 224 prediction.222

13



5.2 Q4223

Comparing two architectures, one employing a scheduler on top of AdamW optimization and Xavier224

weight initialization, and the other omitting the scheduler, several observations emerge. The use of a225

scheduler, which introduces additional decay, does not lead to an acceleration of the learning process226

within the same number of epochs. In fact, it results in a longer training duration compared to the227

baseline without a scheduler. Despite this extended training time, the performance of both models228

ultimately converges to similar levels, just one later than the other in the same measure of timesteps.229

Specifically, the baseline with the scheduler achieves an accuracy of 0.745939 and IoU of .05601230

compared to the baseline without the scheduler (0.734628 0.0566138), indicating that the added231

complexity of the scheduler does not significantly enhance final model performance, considering232

the trade-off in training efficiency and speed. In conclusion, these methods still outperformed the233

baseline model, and were the closest models to the UNet in terms of Pixel Validation accuracy, so234

they were still worth training and evaluating.235

For data augmentation, cropping, rotation and horizontal flip all provided more detailed information236

about each object for our baseline model. By changing the orientations of individual objects in a237

single image, we artificially generate three times of the original size more training examples for our238

model to train on. Just like any machine learning and deep learning tasks, more training examples239

helps the model better understand the task and learn better as a result. Compared with the original240

baseline model, data augmentation helps us get to roughly 0.686 average IoU and 0.749721 pixel241

accuracy value. We see much improvements compared with the baseline model as our model is able242

to learn much more from "more information" in the training dataset.243

For weighted cross entropy loss function, we also see a slight improvment over the baseline model.244

Due to the weighted loss, our model penalizes the loss function more when we make wrong predictions245

for infrequent labels, whereas it contributes less penalty to wrong predictions for majority classes,246

especially the background. This places more emphasis on the less frequent classes and helps us247

overcome the class imbalance issue.248

5.3 Q5249

For experimentation and development on the baseline model (question 5), we tried many different250

architectures. The first method was only implementing dropout on top of the baseline model, which251

as stated in 3.3, only yielded a .1 percent improvement on the validation accuracy. IoU actually252

decreased from .056 to .054 with dropout, suggesting that the benefit in accuracy was not worth253

the loss in IoU. Specifically, dropout was implemented between the encoder and decoder, and not254

between every single layer to save computational resources. The reason for trying this architecture255

method was to reduce overfitting in the baseline and increase generalization, however dropout alone256

did realize this hypothesis. As we will see in other architectures, combining dropout with other257

methods such as augmentation and the UNet yielded better results, suggesting dropout alone was not258

enough to warrant an improvement in IoU or Accuracy.259

The second architecture we used incorporated two max pooling layers. We intentionally did this, as260

we figured that applying max pooling layers will help significantly reduce the impact of data augmen-261

tations, which will in turn improve the generalization of the network on new dataset. Additionally,262

maxpooling puts great emphasis on regularizing features in our dataset and prevented out network263

from overfitting. We also decided to implement LeakyRelu instead of regular Relu for our activation264

function. We chose to do this because we want to enable some learning in the activation while265

doing back propagation when the value inserted into the activation function is negative. Finally, we266

added dropout at every single layer in our network. Despite already having maxpooling to help with267

preventing overfitting, by implementing dropout will make our network more robust with missing268

features, as some features will be set to 0 add a certain layer. As the network can’t learn full features269

at all time will allow our network to become less reliance on perfect inputs for prediction and to be270

more confident at predicting some of the features relevant to in the inputs when our dataset become271

noisy. Despite our second architecture seems to work logically, datahub just wouldn’t run and we272

keep getting gpu reached limits. Hence, we can’t provide any data/ results for this architecture.273

Next, we applied transfer learning and see how much impact small dataset has on our model274

performance, as pretrained models on similar tasks would usually generalize well on other similar275

tasks with small training dataset. Here, we applied Fully Convolutional Network with backbone276

14



of ResNet-101. The model is pretrained on the COCO dataset, which also has 21 classes, yet it277

has much more training data. Before training, we hoped that the transfer learning model would278

perform much better by leveraing more training data from similar task. After training, we see that279

both pixel accuracy and average IoU are improved by a large margin compared with the baseline280

model – roughly 0.873 and 0.33 respectively. The main reason would be that COCO dataset is also281

used for image classification task. Therefore, even we freeze all layers besides the classifier layer, the282

intermediate layers are still relevant for the task and can compute much useful information for the283

final output layer to make relatively accurate predictions. Plus, by leveraging data augmentation and284

weighted cross entropy loss techniques, our training data could perform much better compared with285

the na"ive baseline model, thus helping the classifier layer to learn just enough to make reasonably286

predictions for our semantic segmentation task.287

For the final part, we leverage the structure of UNet architecture, which consists of a series of288

encoding blocks, followed by a series of decoder blocks. Let’s first see the architecture of the UNet289

from the paper[4] as follows:290

Figure 11: UNet Architecture

From the experimental results, we can see that UNet architecture gives us better performances291

in both the pixel accuracy and the average IoU result. One of the reasons could be the depth292

of the architecture. Since now we have more repetition of convolutional blocks of the structure293

conv2d→batchNorm→ReLU, the model learns, layer by layer, more information about the training294

dataset through nonlinearity. Batch normalization also helps much with our model performance more.295

Due to the small size of training data, it might be hard for our model to decode the information and296

make relatively accurate predictions. By the inherent structure of UNet architecture, we are able297

to retain more information from earlier layers of the network thanks to the skip connection from298

encoder blocks to the decoder blocks. However, UNet has much parameters to learn and the size of299

our training data is still small even after data augmentation, we are not able to learn as much as the300

FCN ResNet-101 model due to the inherent problem we face when solving for the task. Also, our301

loss function might not be good enough to solve the imbalanced dataset issue, thus skip connections302

might pass more noise to the deeper layers, thus confusing our model to make wrong predictions,303

especially for dominating classes – this might be the reason why our IoU does not improve much.304

15



6 Team Contributions305

6.1 Nathaniel del Rosario306

I worked on implementing new architectures to improve upon the baseline FCN model. This307

consisted of writing new code and running the training procedure on the new design as well as308

noting its performance. The new models I tested were dropout, dropout ensembled with input image309

transformation, as well as a very deep CNN with dropout. Additionally, I helped create the outline310

for the report, wrote part of the abstract and the introduction paragraphs, wrote the Models and311

Performance Table, part 5a), wrote and formatted some of the tables, wrote about the design choices312

behind AdamW, Xavier Weight Initialization, Batch Normalization, and Dropout, and summarized313

the baseline model in 3.1 as well as included the tables for problems 3 and 4a. I also wrote the314

discussion for Q4 and Q5.315

6.2 Hargen Zheng316

Our initial data augmentation method is not working properly to generate four times the original size317

of training data. Therefore, I modified our approach to perform data augmentation and it worked.318

Besides, I worked on designing heuristics to find weights for each class, so we can alleviate the319

problem of super imbalanced dataset. In addition to work on improving the baseline model, I also320

worked on the experiments with FCN ResNet-101 model transfer learning and UNet model.321

6.3 Chuong Nguyen322

I was very interested in expanding the convolutional neural network to improve the performance of323

our network. I was originally going for 10 layers in the encoder and 10 layers in the decoder, alongside324

max pooling, and dropout at each layer. However, it was very consuming regarding resources and325

memory. Then, I tried working on just adding the dropout on every layers, max pooling on two layers,326

and used leakyrelu for the activation function. I have included some of the related works and how327

extensive readings inspired some of our implementation for this network. Regarding experimentation,328

I tried looking and implementing different loss functions to counter imbalance dataset and discovered329

the ineffectiveness of these loss functions on our network.330

6.4 Ziyue Liu331

I finished the baseline model and implemented the baseline training and baseline model with the332

scheduler and used them as a template for the training procedure of Q4 and Q5. I also implemented333

iou and pixel_accuracy functions for displaying training and validation accuracy and plot and334

table_creating functions in the util file and implemented a visualization file for displaying pixel335

labeling.336

6.5 Adam Tran337

I worked on improving the baseline model, mainly on problems 4b and 4c of the assignment. This338

included writing code to augment the training data with transformed images. I also improved the339

existing base transformation code. Secondly, to deal with the class imbalance, I calculated and coded340

in weights for the Cross Entropy Loss Function. In addition to working on problems 4b and 4c, I341

wrote the sections for these problems in the write up and helped with writing other miscellaneous342

parts of the write up, such as proofreading and fixing errors.343

References344

[1] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using345

deep learning, 2017.346

[2] Trong Huy Phan and Kazuma Yamamoto. Resolving class imbalance in object detection with347

weighted cross entropy losses. arXiv preprint arXiv:2006.01413, 2020.348

16



[3] Mohammad Reza Rezaei-Dastjerdehei, Amirmohammad Mijani, and Emad Fatemizadeh. Ad-349

dressing imbalance in multi-label classification using weighted cross entropy loss function.350

In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering351

(ICBME), pages 333–338, 2020.352

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for353

biomedical image segmentation, 2015.354

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-355

ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–356

MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-357

ings, Part III 18, pages 234–241. Springer, 2015.358

17


	Introduction
	Related Work
	Methods
	Baseline Model
	Improvements Over Baseline
	Experimentation Methods

	Results
	Discussion
	Q3
	Q4
	Q5

	Team Contributions
	Nathaniel del Rosario
	Hargen Zheng
	Chuong Nguyen
	Ziyue Liu
	Adam Tran


